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Abstract. We study continuum percolation and aggregation in binary mixtures of strongly 
interacting particles. The clustering and connectivity behaviour of the dispersed particles 
are determined using the Ornstein-Zernike integral equation in the Percus-Yevick ( PY) 

integral equation. Specifically, we consider a binary mixture of spheres in which the 
interactions between like species are strongly attractive, while the interaction between 
unlike species is purely repulsive. We model this system through hard-core square-well 
(sw) potentials, which we approximate by the adhesive hard-sphere model, which yields 
analytic solutions in the PY theory. We derive the general solution for the percolation 
behaviour of a binary mixture of adhesive hard spheres. We report analytic results for the 
system of interest: the percolation threshold, the average size of the clusters and the 
pair-connectedness functions in terms of temperature, particle-size ratio, composition and 
particle densities. We find that the repulsion between unlike species enhances the clustering 
of the particles. 

1. Introduction 

A great deal of effort has been directed toward the study of the percolation and 
clustering behaviour of dispersions of strongly interacting particles, e.g. colloids, 
microemulsions, etc. Experimental measurements of the conductivity of micro- 
emulsions suggest that the percolation threshold in these systems not only depends on 
temperature and particle volume fraction, but also on the interparticle forces 
(Bhattacharya et a1 1985, Cazabat et a1 1984, Kim and Huang 1986). In particular, 
the behaviour of microemulsions has been successfully modelled by the hard-core 
square-well potential (Huang et a1 1984). Theoretical and computer simulation studies 
on the percolation behaviour of hard-core square-well systems have also been reported 
in the literature (Safran et a1 1985, Bug et a1 1985, Netemeyer and Glandt 1986, Chiew 
and Wang 1988). In these studies, the effects of temperature, particle volume fraction, 
well depth, well width, and the connectivity distance on the percolation threshold were 
examined in detail. Also, the pair-connectedness function of the square-well fluid has 
been theoretically determined in the Percus-Yevick ( PY) approximation (Netemeyer 
and Glandt 1986), and through Monte Carlo simulation (Chiew and Wang, 1988). 

In the present work, however, we examine the percolation in mixtures of strongly 
interacting particles. Specifically we consider a binary mixture (consisting of species 
A and B) in which strong attraction is found among the like species (i.e. among the 
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A-A and B-B pairs), while the interaction between the unlike particles is purely 
repulsive. Thus, particle clustering is found among the A or B particles only. Hence, 
the system may have one percolating cluster of particles (either of species A or B), or 
two simultaneously percolating clusters. We examine the effects of temperature, the 
repulsion between unlike species, particle volume fraction, particle sizes, and strength 
of attraction on the percolation behaviour of the mixture. 

In this study, the percolation threshold of the mixture is determined through the 
connectivity Ornstein-Zernike (oz) integral equation (Coniglio et a1 1977). This 
approach has been employed to study a number of model systems; these include the 
randomly centred spheres, the permeable spheres (Chiew and Glandt 1983, Chiew er 
a1 1985, Wu and  Chiew 1989), the adhesive hard sphere (Chiew and Glandt 1983), 
the penetrable concentric shell model (DeSimone et a1 1985), and the square-well 
fluids (Netemeyer and Glandt 1986). The oz approach is based on the concept of 
physical clusters (Hill 1955). It is built around the pair-connectedness function g;( r)  
which is defined so that p,p,g;(r,, r,) d r ,  dr, represents the probability of finding a 
particle, of species i, situated in volume element d r ,  at r , ,  and another particle, 
belonging to the same cluster, of species j ,  situated in volume element dr, ar rz. It 
has been shown that the mixture pair-connectedness function g:(r) is related to the 
so-called direct-connectedness function c:(r) by the following Ornstein-Zernike 
equation (Chiew et a1 1985): 

k J  

Equation (1) can be solved subject to an appropriate closure. The most commonly 
used closure in this connection is the Percus-Yevick approximation (Coniglio er a1 
1977, Stell 1984). After determining the pair-connectedness function, the percolation 
threshold can be obtained by first computing the mean cluster size S using (Chiew er 
a1 1985): 

followed by taking the limit of S + w  to yield the percolation threshold. In ( 2 ) ,  
xi = p i / Z k  pk denotes the number fraction of species i. 

2. The model 

We consider a binary mixture (consisting of particles of species A and B) in which 
the interaction between the unlike species is repulsive, while mutual attraction is present 
between the like species. We model the strong attractive forces between the like species 
modelled by the hard-core square-well potential, while the interaction between species 
A and B is given by the hard-sphere potential, i.e. for i = A  or i = B, we have 
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and 

Here, RI represents the hard-core diameter of species i ;  RA, = (RA+ R B ) / 2 ,  ( W, - 1 )  R, 
denotes the width of the attractive square well, and E, is the depth of the well. As it 
stands, the square-well system, given by (3) and ( 4 ) ,  does not yield analytic solutions 
in the PY closure. Our approach is to represent the square-well system by the simpler 
adhesive hard sphere ( A H S )  model, which can be solved analytically in the PY approxi- 
mation. The Boltzmann factor e,,( r )  = exp( -pq$,( r ) )  of the A H S  is given by 

I 1  r >  R,. 

The mutual attraction between particles in the adhesive hard sphere model is charac- 
terised by a surface adhesiveness or 'stickiness' which is accounted for by the Dirac 
delta function in ( s a ) .  The quantitative measure of the strength of this stickiness is 
given by the parameter T O ' .  The parameter T,] can also be viewed as a dimensionless 
indicator of the temperature of the system. It is noted that for the hard-sphere potential, 
T,, + 00. A relationship between the adhesive hard spheres and  the square-well system 
can be established by equating their respective second virial coefficients. For the system 
considered here, it is found that (for i = A  or  B) 

( 6 a )  
- I  

T,, = 4{1-  [ W - exp(pE,)( w7 - 1 ) I I  

and 

( 6 b )  
- 1  

T A B  = 0. 

The 'stickiness' parameter T A L  is set to zero because the interaction between the A and 
B particles is of the hard-sphere type. An examination of ( 6 a )  and ( 6 6 )  shows that, 
for fixed values of E, and W,, T,, ( i  = A or  B) increases with the absolute temperature 
T. On the other hand, at a fixed temperature T, T,,  decreases with increasing E ,  and 
W, (i.e. the overall strength of attraction). In what follows, we shall consider T A A  to 
be a dimensionless indicator of temperature T, while T B B  will be taken as an  integral 
measure of the strength of attraction between the type-B particles at  the temperature 

In the study of the physical clustering of particles (Hill 1955), the Boltzmann 
factor el,( r )  is separated into its connected and non-connected parts, represented by 
e ; ( r )  and e ; ( r ) ,  respectively, so that e,,(r) = e ; ( r )  + e: (r ) .  Similarly, the Mayer 
function fi,( r )  = e,]( r )  - 1 can also be decomposed into its respective connected and 
non-connected parts, i.e. 

specified by T A A .  

f X r )  = e:(Y) ( 7 0  1 
f ; m  = e , ( r )  - 1 - e : w .  (76)  

The PY solution to the pair-connectedness function of the A H S  mixture can be obtained 
by solving the oz equation subject to the following closure (Stell 1984): 

c:, = f :[s ,  - c,l + f ; [ g :  - c;1 (8) 
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where g ,  and c,, represent the radial distribution function and the direct-correlation 
function, respectively. Combining equations ( 5 ) ,  ( 7 )  and (8) gives the boundary 
conditions to the oz equation 

g:( r )  = g, ( r )  = h,,R,, S ( r - R,, ) O < r < R , ,  
12 

ch( r )  = 0 r >  R,, ( 9 b )  

The parameter A,, in the coefficient of the Dirac delta function in ( 9 a ) ,  accounts for 
the number of species-j particles that are in contact with a type-i particle. More 
precisely, the number of type-j particles that are in direct contact with a type-i particle, 
zl,, is given by 

ziJ = 2Aij (1)’ 7,. 

The parameter A,, has been found to be a function of T,,, p,  and R,,, given by (Cummings 
et al 1976, Perram and  Smith 1977): 

where &, = ( n - / 6 )  Z k  p k R T .  Note that A A B  = 0 for the system considered here, because 
there is n o  attraction between unlike species. 

3. PY solution of the connectivity problem 

The connectivity oz equation (1) can be solved analytically in the PY approximation 
through the use of Baxter’s factorisation technique (Baxter 1968a, b).  In this method, 
the connectedness function g : ( r )  can be shown to follow 

rg:(r)  = --qL(r) + 2 7 ~  C p h  d t  q!L)( r  - t )g; , (r  - t ) .  ( 1 2 )  
h L R  ’ 

Here, SI, = ( R I  - R , ) / 2 ,  and q,,( r )  is a short-ranged function which vanishes for r > R, 
and r < S,,. Substituting ( 9 a )  into ( 1  1 )  yields 

r > Rti. L o  
The Ornstein-Zernike integral equations can also be expressed in the following 

matrix form: 

I + & ( k )  = [ I  - e( k ) ] - ’  (14) 

where I is an  identity matrix, and 6 ( k )  and e ( k )  are square matrices whose ijth 
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elements are, respectively, given by 

GI, = 4 ~ -  k-' rg;(r) sin kr d r  (15) 

(16) 

5 
I e,, = 4 7 ~ a  k- '  re:( r)  sin kr dr. 

Baxter (1970) has shown that the function q!' is related to G(k )  by 

I + G(k)  = [ oT( -k )o (k ) ] - '  (17)  

where the ijth element of the matrix o ( k )  is given by 

Combining (2), (13), (15), (17) and (18) yields the following expression for the average 
particle-cluster size S: 

(19) 

Here, A = (1 - A A A v A ) (  1 - A B B v B )  - vAvBAaBRiB/RiRi ,  where v i  =;.np,R: represents 
the volume fraction of species i in the system, and xi = pi/Zk pk. Note that the result 
for S,  given by equation (19), is not restricted to the system considered here but that 
it holds for any two-component mixture of adhesive hard spheres. In the present case, 
in which A A B  = 0, (19) can be simplified to give 

S = x A S A A  + x B S ~ B  

(20) 
XB + L X A  - 

(1 - A A A ~ A ) ~  (1 - A B B ~ B ) ~ '  

The quantities S A ,  and SBB denote the average size of clusters formed by particles of 
species A and B, respectively. Percolation occurs (i.e. S+w) when either S A A  or 
diverges. These conditions, respectively, correspond to 

A A A T A  = 1 (21a) 

Using (11) to eliminate A A A  from (21a) yields the threshold for the percolation of 
species A 

Similarly, the percolation locus of species B is found to be 

Equations (22) and (23) give the percolation temperature at which clusters of infinite 
size are formed by particles of species A and B, respectively. Note that the value of 
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TAA: 0.4 - 
..--- TA,:o.8 

-- TAA:l.O 

rAA required for percolation of species A is independent of whether species B is 
percolating or  not, and  vice versa. When both percolation conditions are simultaneously 
satisfied, the system possesses two interpenetrating infinite aggregates or  ‘gels’. 

4. Results and discussion 

We first examine the effect of the presence of species B on the clustering of species 
A. This effect can be seen in figure 1, in which the root AAA, which determines the 
extent of A-A aggregation, is plotted as a function of the dimensionless density p z  
(=(7r/6)pBRk) for a fixed value O f  p i  (= ( r r /6 )p~R; )=o . l ,  Rg/RA=1, and  different 
values of TAA. Note that, at a given p ; ,  A A A  increases with decreasing rAA.  This is 
expected since the effective attraction is stronger at a lower temperature. Also, it is 
observed that A A A  increases with increasing p ; .  As a consequence of the repulsion 
between unlike species, the addition of type-B particles enhances the clustering of A 
particles. This steric repulsion effect should be more evident for Rg > RA.  Displayed 
in figure 2 is a plot of A A A  as a function of p $  for rAA=0.8, pZ=O.l and various 
particle-size ratios. This figure indeed shows that, for a fixed reduced density of the 
second component, p ; ,  A A A  increases with RB/RA.  The other root, ABB, which deter- 
mines the extent of B-B aggregation, is plotted in figure 3 as a function of p ;  for 
p x  =0.1, = 1 and  different values of TBB. As expected, Agg increases as the 
density of B particles is increased and it decreases with increasing rBg, the effective 
temperature. The effect of the particle-size ratio on Agg is shown in figure 4. 

The average sizes of clusters formed by particles A and B are displayed in figure 
5. In  this figure, the full and broken curves represent SA,  and  S g B  computed for 
TAA = T B B  = 0.4 and RB/RA = 1.0. For each S,,, the lower and upper curves are computed 
for p z  = 0.1 and  0.2, respectively. Both S A A  and  SgB increase with p;.  Displayed in 
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Figure 2. The parameter A,, plotted as a function of p $  for p X = O . l ,  ~,*=0.8, and 
different values of R,/R,. 
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Figure 3. The parameter A,, plotted as a function of p z  for p a  = 0.1, R , / R ,  = 1, and 
different values of T,,, . 

figure 6 are the percolation temperatures TAA plotted against pg for pX=O.l, p = 
T B B / T A A =  1, and various values of particle-size ratios. For each set of curves, the 
lower, intermediate and larger curves correspond to R B / R A =  1.2, 1.0 and 0.5 respec- 
tively. 

In addition to the mean cluster size and the percolation temperature, we have also 
obtained the pair-connectedness function g:( r ) .  For the A H S  mixture considered here, 
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I I I I I I 
0 0.1 0.2 0.3 0.4  0.5 0.6 

Figure 4. The parameter A,, plotted as a function of pg for p i  = 0.1, rAA = 0.8, and different 
values of R , I R , .  

G 
Figure 5. The mean cluster sizes SA, and S,, plotted as a function of pg for R B / R A  = 1 
and rAA = r g ,  = 0.4. For each set of S,,, the, upper and lower curves correspond to pX = 0.2 
and 0.1, respectively. 
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the function g : ( r )  can be determined analytically by transforming (12) into a delay- 
differential equation (Bellman and Cooke 1963, Chiew and Stell 1985). If we let 
A,( r )  = r g t (  r ) ,  (12) becomes 

Differentiating (25) with respect to r yields the following delay-differential equation: 

f :!(r)  -2.irP,q,,(o)A,(r) = - i w ~ , ! R ; l A l ( ~ -  RI,). (26) 

Equation (26) is a first-order inhomogeneous ordinary differential equation. The 
function J;, ( r )  can be determined if A,( r - R!,) is known, which is the case here. If we 
substitute (9a )  into (26 ) ,  we find that, for RI, < r < 2R,,, 

f : I ( X ) - Z l J ; , ( X ) = - - l S ( X - 2 )  (27) 

where x = r/Rll, z, = A,,q ,  and  5, = A,,z,. The presence of the delta function in (27) 
implies thatf; ,(x) is discontinuous at x = 2. It is straightforward to solve (27) to obtain 

A,(x) = 5, exp[z,(x- 1 ) 1  for 1 < x < 2 .  (28) 

If the above procedure is carried out recursively for the ranges 2 < x < 3 and 3 < x < 4, 
we find that, for 2 < x < 3, 

A l ( x ) = l l  exp[zl(x-2) l [exp(z,)-1-z , (x-2)I  (29) 
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Figure 7. Pair-connectedness function gi, plotted as a function of x for pX = 0.1, RE/ R A  = 

1, and different values of p; .  

n n  

X 

Figure 8. Pair-connectedness function g i p ,  plotted as a function of x for p i  = 0.1, p $  = 0.2, 
RE/  R A  = 1 and different values of T , ~ .  
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x {exp( z,)[exp( z,) - 1 - z, ( x  - 2 ) ]  + z,(x - 3)[ 1 + z,(x - 3)/2]}. (30) 

The pair-connectedness function giA(X) (=fyA/x) plotted as a function of the 
dimensionless distance x (=Y/RAA), for RB/RA= 1.0, pjs = 0.1 and different values of 
p:, is shown in figure 7. The function giA(X) is discontinuous at x = 2 ,  and decreases 
with x. An inspection of the figure shows that, for a given x, giA(X) increases with 
increasing p s .  This is in agreement with our previous observation that the addition 
of B particles promotes the clustering of A. Plotted in figure 8 is giA(x) for p z  = 0.1, 
p ;  = 0.2, R B I  RA = 1.0 and different values of TAA.  

At the percolation threshold, z,, = A,,v,  = 1 (i.e. equation (21)). This implies that 
5, =&A, ,  = (127,)-'. Combining this result with the analytic expressions for g:(x), i.e. 
(28)-(30), reveals that the function [ ~ , f ; , ( x ) ] ~ ~ ~ ~  is independent of T,,. This means that, 
at the percolation threshold, ~ , f ; , ( x )  for different temperatures all collapse into a single 
curve. This interesting result holds only in the PY approximation, and is not expected 
to be valid in general. 
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